Quantifying and Visualizing Attribute Interactions: An Approach Based on Entropy
نویسندگان
چکیده
Interactions are patterns between several attributes in data that cannot be inferred from any subset of these attributes. While mutual information is a well-established approach to evaluating the interactions between two attributes, we surveyed its generalizations as to quantify interactions between several attributes. We have chosen McGill’s interaction information, which has been independently rediscovered a number of times under various names in various disciplines, because of its many intuitively appealing properties. We apply interaction information to visually present the most important interactions of the data. Visualization of interactions has provided insight into the structure of data on a number of domains, identifying redundant attributes and opportunities for constructing new features, discovering unexpected regularities in data, and have helped during construction of predictive models; we illustrate the methods on numerous examples. A machine learning method that disregards interactions may get caught in two traps: myopia is caused by learning algorithms assuming independence in spite of interactions, whereas fragmentation arises from assuming an interaction in spite of independence.
منابع مشابه
A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملExtended MULTIMOORA method based on Shannon entropy weight for materials selection
Selection of appropriate material is a crucial step in engineering design and manufacturing process. Without a systematic technique, many useful engineering materials may be ignored for selection. The category of multiple attribute decision-making (MADM) methods is an effective set of structured techniques. Having uncomplicated assumptions and mathematics, the MULTIMOORA method as an MADM appro...
متن کاملA Hybrid Grey-Game-MCDM Method for ERP Selecting Based on BSC
An enterprise resource planning (ERP) software is needed for industries and companies that want to develop in future. Many of the manufactures and companies have a problem with ERP software selection. An inappropriate selection process can affect both the implementation and the performance of the company significantly. Although several models are proposed to solve this problem many of them did n...
متن کاملAn Evolutionary Algorithm Based on a Hybrid Multi-Attribute Decision Making Method for the Multi-Mode Multi-Skilled Resource-constrained Project Scheduling Problem
This paper addresses the multi-mode multi-skilled resource-constrained project scheduling problem. Activities of real world projects often require more than one skill to be accomplished. Besides, in many real-world situations, the resources are multi-skilled workforces. In presence of multi-skilled resources, it is required to determine the combination of workforces assigned to each activity. H...
متن کاملGraph Hybrid Summarization
One solution to process and analysis of massive graphs is summarization. Generating a high quality summary is the main challenge of graph summarization. In the aims of generating a summary with a better quality for a given attributed graph, both structural and attribute similarities must be considered. There are two measures named density and entropy to evaluate the quality of structural and at...
متن کامل